Incredible Edible Selenium Nanoparticles Produced by Food-Grade Microorganisms

Arwa Al. Ghanem¹, Muhammad Jawad Nasim¹, Faez Alnahas¹, Yannick Ney¹, Agnes-Valencia Weiss², Marcus Koch³, Marc Schneider², Claus Jacob¹, *

¹ Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbruecken, Germany;

² Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, Saarbruecken, Germany;

³ INM-Leibniz-Institute for New Materials, Campus D2 2, Saarbruecken, Germany

Article Information

Identifiers and Pagination:

Year: 2021 Volume: 2 Issue: 2 First Page: 135 Last Page: 144 Publisher ID: <u>CNT-2-135</u> DOI: <u>10.2174/2665978601999201113152144</u> Article History:

Received Date: 30/10/2019 Revision Received Date: 14/09/2020 Acceptance Date: 01/10/2020 Electronic publication date: 2021

Copyright: 2021 Bentham Science Publishers

Correspondence: Address correspondence to this author at the Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123, Saarbruecken, Germany; Tel: +496813023129; E-mail: <u>c.jacob@mx.uni-saarland.de</u>

Background: Microorganisms commonly employed in food industry, such as *Lactobacillus plantarum* and *Saccharomyces cerevisiae*, are also excellent natural nanotechnologists. They reduce selenite (SeO_3^{2-}) to form nanoparticles of red selenium (Se^0) of exceptional quality and with interesting physical and (bio-)chemical properties.

Objectives: The production of these nanoparticles has been studied in several relevant microorganisms to gain a better picture of the overall properties and quality of these particles, possible differences between producers, ease of production and, in particular, biological activity.

Methods: Several common microorganisms, namely *L. plantarum*, *S. cerevisiae* and *E. coli* have been cultured under standard conditions and 1 mM concentrations of SeO₂ have been converted into red particles of elemental selenium. These particles are characterized extensively with respect to uniformity, size, shape, consistency and, in particular, biological activity against infectious microbes.

Results: Highly uniform amorphous spherical particles of 100 nm to 200 nm in diameter could be produced by several microorganisms, including *Lactobacillus*. Although originating in bacteria and yeast, these particles exhibit antimicrobial activity when employed at concentrations of around 100 μ M. This activity may in part be due to the inherent chemistry of selenium and /or of the protein coating of the particles. Interestingly, yeast also forms larger rod-like structures. These micro-needles with around 85 nm in diameter and up to 3 μ m in length exhibit considerable antibacterial activity, possibly resulting from additional, physical interactions with cellular structures.

Conclusion: Common microorganisms traditionally employed in the preparation of food produce nanoparticles of selenium which may be harvested and explored as natural antimicrobial agents or antioxidants. These particles provide a fine example of natural nanotechnology with biological activity and applications in the food and food supplementation, medicine, agriculture and cosmetics.

Keywords: Antimicrobial activity, bioreduction, *Escherichia coli*, *Lactobacillus plantarum*, natural nanoparticles, physical toxicity, *Saccharomyces cerevisiae*, selenium, yeast.