Role of Natural Plant Products Against Hemagglutinin-esterase (HE) of Human Coronavirus

Mantasha Idrisi¹, Mohd Shahid¹, Falaq Naz², Yasir Hasan Siddique², *

Article Information

Identifiers and Pagination:

Year: 2022 Volume: 3 Issue: 2

E-location ID: e230222201366 **Publisher ID:** e230222201366

DOI: 10.2174/2665978603666220223093343

Article History:

Received Date: 06/07/2021

Revision Received Date: 15/11/2021 Acceptance Date: 15/12/2021 Electronic publication date: 2022

Copyright: 2022 Bentham Science Publishers

* Address correspondence to these authors at the Department of Zoology, Faculty of Life Sciences, Drosophila Transgenic Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India; E-mail: yasir-hasansiddique@rediffmail.com

Background: COVID-19 has spread worldwide and become a great cause of economic and social loss. Due to the non-availability of effective medicine/drug, its control has become a difficult task.

Objective: In the present study, the effect of some selected natural plant products was studied on the Hemagglutinin-esterase of the human coronavirus by performing molecular docking.

Methods: Molecular docking study for some selected natural plant products against Hemagglutinin-Esterase (HE) of human coronavirus was performed using the HEX 8.0.0 software.

Results: The free binding energy ranged from -298.14 to -161, with that of curcumin being the highest.

¹ Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;

² Department of Zoology, Faculty of Life Sciences, Drosophila Transgenic Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India

Conclusions: The results suggest that the natural plant products could act as possible anti-viral agents and may be used as natural therapeutic agents.

Keywords: Coronavirus, natural plant products, molecular docking, hemagglutinin-esterase, non-covalent interactions, protein-ligand.